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Detection and Classification of Weld -
Discontinuities in Radiographic Images
- (Part 1II: Unsupervised Learning —

- Phenomenological Analysis)

by Germano X. de Pddua,” Romeu R. da Silva,t Domingo Mery,t Joio M.A. Rebello$
and Luiz P. Caléba™

ABSTRACT : '

This is the third and final installment of a three-part article on detection
and classification of discontinuities appearing in radiographic images of
welds. The present installment is the continuation of the section on unsy-
pervised pattern recognition. In this work, the authors present the phe-
nomenological analysis of the pattern profiles of weld discontinuities that
resulted from the adaptive resonance theory (ART) networks that were car-

ried out. It is recommended that the previous parts of this article (de Padua - -

et al., 2007a; 2007b) be read before the present installment. -
Keywords: transversal gray level profiles, adaptive resonance theory, weld
discontinuities, radiography, nondestructive testing.

RESULTS

Phenomenoiogical Analysis of the Patterns Generated
Phenomenological analyses of the patterns were made individu-
ally for each class from the situations considered to be the best rela-
tions between D and N in the graphs presented in Figure 5 of Part II
of this article (de Padua et al., 2007). This is in agreement with the
literature (Duda et al., 2001), and was followed by visual analyses
of the patterns obtained individually (Figures 6 through 10 in Part
11). These analyses are as follows.
W No discontinuity class: from the D x N graph, the optimum
point, which is the point where this curve undergoes an inflection,
would be given by three patterns (Figure 5a in Part II). However,
from visually analyzing these three patterns (Figure 6a in Part IT), it
is seen that there is a significant similarity between two of them (the
blue and black lines), and they can be represented by only-ene pat-
tern; the two resulting patterns, generated from a larger vigilance
parameter, are presented here in Figure 1.
W Porosity class: in the N x D graph (Figure 5b in Part II), two
points are seen that are interesting to analyze (point 2 and around
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Figure 1 — The two patterns that represent the no discontinuity class.

point 10). The patterns generated are considered nonsimilar; how-
ever, the similarity between some of the nine patterns seems rea-
sonable in their individual analysis (Figure 7b in Part II), therefore,
we adopted two patterns to represent this class. These patterns are
represented in Figure 2.

M Longitudinal crack class: in the N x D graph, the point of change
of the slope is seen in four patterns (Figure 5¢ in Part II), but when
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Figure 2 — The two patterns that represent the porosity class. Figure 4 — The two patterns that represent the slag inclusion class.
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Figure 3 — The two patterns that represent the longitudinal crack
class. : Figure 5 — The two patterns that represent the lack of fusion class.
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these patterns are analyzed visually, considerable similarity is seen
between them (Figure 8a in Part IT). To reduce the nurmber, the situ-
ations with 1, 2 and 3 patterns were analyzed, yet considerable sim-
ilarity was still identified. Finally, a situation with two patterns was
adopted, as shown here in Figure 3.

W Slag inclusion class: the N'x D graph has two points of interest,
localized in two and five patterns (Figure 5d in Part IT). The visual
analysis of these patterns (Figures 9a and 9b in Part II) indicates that
with two patterns a good representation is obtained. The two pat-
terns adopted are reproduced separately in Figure 4.

W Lack of fusion class: when analyzing the N x D graph of this
class, two possible inflection points are seen in two and four pat-
terns (Figure 5e in Part II). When visualizing these patterns, it is
found that some of them are similar and can be compressed with

some reservations. The two patterns shown in Figure 10a of Part II .

were adopted as “natural,” and are shown separately in Figure 5.
B Lack of penetration class: the N x D graph of this class is quite
didactic, showing two points (2 and 7 patterns) where an analysis is

necessary (Figure 5f in Part IT). When there are two patterns, they-.,

are quite characteristic and important from the standpoint of being
representational of this class; in the visualization with seven pat-
terns, great similarity is seen between some of them (Figure 11b in
Part IT). Therefore, two patterns were adopted to represent this
class, and they are presented separately in Figure 6.

W Class undercut: in the N x D graph (Figure 5g in Part II), it is
clearly seen that the sharpest changing point of the slope is found
with three patterns. However, visual analysis of these patternis
shows considerable similarity between two of them (Figure 12bin
Part II), leaving only two patterns that are shown separately in
Figure 7.

The Modified Adaptive Resonance Theory Network as
Classifier

In addition to the primary objective of obtaining the patterns, the
network was tested as a classifier with the pattern situations defined
above. The result obtained, however, was much lower, than with the
supervised network of the backpropagation type (as discussed in
Part I). This is because in order to obtain a low number of “natural”
patterns, the vigilance parameter must be small, leading to a very
large radius of similarity (in our case around one) and consequently
a great class invasion. To'use the network as a classifier, an optimized
radius must be used to define the domains, as described in Part II.
Examining the intraclass distances — that is, between the inputs of
the same classes of discontinuities (dij) — we get the histograms
shown in Figure 8.

It is seen that the distribution of the distances between the sam-
ples of each class is approximately normal, concentrating practical-
ly within the same zone for all the classes, and that was advanta-
geous for this study. This survey allows the evaluation of the
performance of the populations of each class and the estimation of
the value of their radius of similarity when giving a definition of the
patterns of classes and subclasses. From the histograms, a small,
conservative value was adopted for the smallest mode, m, of each
distribution, and from it and the criterion defined in Part II, the vig-
ilance parameter p of each class was defined, where:

(D

The use of smaller similarity radii should lead to a quite greater
number of patterns and better discrimination of class domains, al-
lowing the use of the network also as a classifier. The vigilance pa-
rameters were established from the lowest mode of each dass. For
the lack of fusion class, p =0.989 was the largest of them. Forthe no
discontinuity, longitudinal crack, lack of penetration and undercut
classes, p = 0.955 was established; for the slag inclusion class,
p = 0.975, and for the porosity class, p = 0.899.

Considering that the similarity radii are not much different from
each other, it is concluded that it would be better to use the same ra-
dius for all the classes due to the great ease of implementation that it
would bring. Since the radius found for each dlass is the maximum
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Figure 6 — The two patterns that représent the lack of penetration
class.
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Figure 7 — The two patterns that represent the undercut class.
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Figure 8 — Distribution histograms of the distances between the samples: (a) for the no discontinuity class, m = 0.2 (mode); (b) for the porosity class,
m = 0.30 (mode); (c) for the longitudinal crack class, m = 0.20; (d) for the slag inclusion class, m = 0.15; (e) for the lack of fusion class, m = 0.10;
(f) for the lack of penetration class, m = 0.20; (g) for the undercut class, m = 0.20.
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suggested value, we used the smallest of them, = 0.15, which corre-
sponds to m = 0.10, found for the lack of fusion class, and that gives a
vigilance parameter p = 0.989. Applying the procedure, the number
of patterns for each class presented in Table 1 was obtained.

Table 1 Number of patterns per class (with g = 0.989 for alt the
classes)

Class Number of Patterns
No discontinuity 26
Porosity 55
Longitudinal crack 22
Slag inclusion 31
Lack of fusion 7
Lack of penetration - 16

Undercut 12

The greater number of patterns in the classes that would admit
larger radii is an indication that the use of larger radii in these class-
es is possible in principle.

Tables 2 and 3 show theé results obtained from confusion be-
tween the classes for the training and testing sets.

The answer “no class” indicates that no neuron was activated
for a given input. The errors shown in the confusion tables are “in-
vasions” that can be corrected by the reduction of the radius of sim-
ilarity of the neuron that suffered the invasion and was activated -
mistakenly, but in principle this procedure requires retraining the
network specialized in the class, to fill with other neurons possible
voids left by the radius reduction. To test this hypothesis, an even
smaller radius of similarity was used, r = 0.10, which is less suscep-
tible fo being invaded; this new radius led to a considerably greater
success rate than that of the table, but at the expense of a substantial
increase in the number of patterns, which was expected and unde-
sirable. Considering the current success rates (Tables 3 and 4), al-

though smaller than those obtained with the supervised trained

network with backpropagation (Part I), it is important to stress once
again that the main objective of this work was to find patterns rep-
resentative of transverse profiles of gray levels for each typical weld
discontinuity, and it can be considered an original work.

CONCLUSION

With the increasing amount of research being conducted on de-
veloping an artificial intelligence system for the analysis of radi-
ographic images — mainly of welds (de Padua et al,, 2007a; 2007b),

Table 2 Confusion table for the training set

as is the case of this work — it is very important that the research be
directed toward the various possible work “roads.” The main ob-
jective of this work was to contribute new results in relation to the
use of transverse profiles of gray levels for the detection and classi-
fication of discontinuities, normally used in place of the geometric
and textural characteristics of the discontinuities.

It was found that it is possible to obtain patterns representative
of profiles for each class of discontinuity or for a class without dis-
continuities. The results were satisfactory and can be used together
with image processing techniques that generally make up the first
part of the development of the intelligent system. It is possible that
discontinuity profile patterns could be used in doubtful situations
of visual classification of welding discontinuities, comparing a
transverse profile with a discontinuity visualized with a pattern ob-

. tained by semisupervised training.

As to the classification indices, they were significantly lower
than those achieved with the supervised training by backpropaga-
tion of error, dealt with in Part I; that was expected, because super-
vised training usually gives fewer classification errors. Keeping in
mind that these were initial tests and we can improve the processes
of profile optimization and further variations of the similarity ra-
dius, it can be considered that these tests were satisfactory, mainly
for classes like longitudinal cracks and porosity, which had success
rates close to 90%.
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Class Confusion(%)
No Discontinuity ~ Porosity Longitudinal = Slag Inclusion Lack of Lack of Undercut None
: Crack Fusion  Penetration
No discontinuity* * - 71 8 4 5 1 9 2 0
Porosity 3 94 1 0 0 2 0 0
Longitudinal crack 2 4 91 1 1 1 0 0
Slag inclusion 4 1 3 89 2 1 0 0
Lack of fusion 8 4 0 0 88 0 0 0
Lack of penetration 12 1 1 1 0 85 0 0
Undercut 1 0 0 0 0 0 99 0
Table 3 Confusion table for the testing set
Class Confusion (%)
No Discontinuity ~ Porosity Longitudinal Slag Inclusion Lack of Lack of Undercut None
Crack Fusion Penetration
No discontinuity 66 9 6 2 0 13 3 1
Porosity 4 87 0 1 0 5 0 4
Longitudinal crack 2 2 92 2 0 2 0 0
Slag inclusion 10 7 0 80 0 0 0 3
Lack of fusion 0 25 0 0 58 17 0 0
Lack of penetration 19 3 6 0 0 72 0 0
Undercut 11 0 0 0 0 5 84 0
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