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ABSTRACT

Radiographic testing of weld joints is of great importance for verifying
and maintaining weld quality. This work presents a new technique for the
development of an automatic or semiautomatic system for radiographic
weld analysis. This technique uses gray level profiles transversal to weld
beads in radiographic patterns. These profiles were processed to aid in the
setup of nonlinear pattern classifiers developed by neural networks with al-
gorithms by backpropagation of error. The classification accuracy was esti-
mated via the average correctness of 10 randomly chosen test sets. The re-
sults presented a general accuracy of classification correctness of around
95% for the class patterns in the profiles that were used.
Keywords: transversal gray level profiles, nonlinear classifier, weld dis-
continuities, radiography, nondestructive testing.

INTRODUCTION

Nondestructive testing is increasingly used as a tool to evaluate
equipment and material quality. Among the various test methods,
radiographic testing is often favored because of its ability to create
an image of the internal structure of the item under test (Halmshaw,

based on visual analysis of radiographs, and depend on the experi-
ence of the examiner and the test adjustment parameters, even with
a radiographic image of satisfactory quality (Fiicsok et al., 2000;
Fiicsok et al., 2002).

The technological advances of digital radiographic imaging
equipment, coupled with recent developments in artificial intelli-
gence (such as artificial neural networks, fuzzy logic, neuro-fuzzy
systems and genetic algorithms), have provided the impetus for ac-
tive work on the development of automatic and semiautomatic sys-
tems for analyzing and classifying radiographic images.

Radiographic testing is widely used for welded joints, and a
large amount of research has gone into the acquisition of images
and development of software to interpret weld bead radiographs.
‘This work presents the classification results for weld discontinu-
ities imaged in radiographs taken by international institutions.
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The main objective of the work is to evaluate the performance of
nonlinear pattern classifiers, set up by artificial neural networks, in
the detection and dlassification of the main classes of weld disconti-
nuities (undercutting, lack of penetration, lack of fusion, porosity,
slag inclusion and cracking). A new methodology was used, which
will be described in detail in this paper. This methodology is based
on the extraction of transversal gray level profiles of the weld beads
to be used as input data in the classifiers, a resource that other au-
thors have used, but with different classification techniques (Liao
and Li, 1998; Liao and Ni, 1996; Liao et al., 1999). These profiles
were preprocessed using a procedure distinct from that used in
other works, in order to optimize the classification of the disconti-
nuities. The accuracy of the classification was estimated through
the use of randomly chosen training and test sets, and the general-
ization of the classifiers was assured by using validation sets. The
results are presented in classifier performance tables and compared
with the results of other work.

This work is a continuation of works already published (Padua
et al., 2003; Padua et al., 2004), and is the first part of the obtained
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neural networks. The second part is about using unsupervised
learning developed by adaptive resonance theory with some modi-
fications (Haykin, 1994).

STATE OF THE ART

There are a number of excellent works in this area that could be
discussed here. However, taking into consideration the objective of
this work, the most relevant are the publications of Liao and Ni
(1996) and Liao and Li (1998). These works also made use of trans-
versal profiles of weld beads, but with methodologies different
from those developed in the present work.

Liao and Ni (1996) extracted the weld bead from the radiographic
digital image using the software Khoros. However, neural networks
weren't used for the dassification of the beads. In this work, Liao and
Ni desaribed in detail the 15 steps that make up the algorithm of bead
extraction. Their results proved the total efficiency of his methodology
(100% success rate) for the extraction of weld beads that had linear
edges/borders. They emphasized, however, the need to develop this
technique for weld beads with curved edges/borders.

In later work, Liao and Li (1998) described their efforts to devel-
op an automatic radiographic system for the detection of discont-
nuities in the weld bead. The methodology employed was devel-
oped based on observations that an intensity profile of the gray
levels transversal to the weld bead took the shape of a perfect bell.
A welding discontinuity, if apparent in the weld bead, resulted in
an anomaly in the shape of the profile. Liao and Li classified these
anomalies into three categories: peak, trough and slant-concave.

The detection technique used by Liao and Li (1998) was made
up of four main steps:
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B a preprocessing module

M a curve adjustment module

B an anomaly profile detection module

B a postprocessing module.

The preprocessing module was used to remove the background of
the image and place all the images on the same gray standard. The
curve adjustment module was used to soften the profiles by applying
a filter. The anomaly profile detection module detected the existence
of anomalies in the profiles. The results obtained from the processed
profiles were then assembled to generate a bi-dimensional map of
the discontinuity. The postprocessing module removed isolated
anomalies that had been identified in a previous step.

MATERIALS AND METHODOLOGIES

Radiographic Films and Scanners

To give the greatest possible reliability to the results of the
classification, radiographic images from the International Insti-
tute of Welding (ITW) and the Federal Institute of Materials Re-
search and Testing (BAM) were used. The largest possible number

(a)

(b)

of radiographs was used in order to obtain the best possible statis.
tical significance from the results. An older collection of radj.
ographic images from the TW was digitized with a scanner using 5
spatial resolution of 20 pixels per millimeter and 256 levels of gray.
The second collection of radiographs from the IIW was recen]
digitized using a scanner with the maximum available resolution of
79 pixels per millimeter. The collection of radiographs from BAM
was digitized using a scanner with 24 pixels per millimeter and 17
bits of gray level, later converted to 8 bits (256 levels). Although thege
images showed various types of weld discontinuities, only the more
common classes of welding discontinuities, such as undercutting,
lack of penetration, lack of fusion, porosity; slag inclusion and longi-
tudinal cracking, were studied. In addition, the “no discontinuity”
class was also studied. Figure 1 shows examples of the radiographic
images used for each dass of discontinuity (Silva et al.,, 2005).

Data Preprocessing

The digitalized radiographs were preprocessed with a 3 x 3 filter
to reduce noise (Silva et al., 2001; Silva et al., 2002; Gonzalez and
Woods, 1992) and to enhance contrast mainly of the weld bead and
for subsequent procedures.

Most work in this research area involves processing complex
images for segmentation of the weld joint image, extraction of the
features of the “objects” detected in the segment, and discontinu-
ity classification (Shafeek et al., 2004a; Shafeek et al., 2004b; Silva
etal., 2001; Silva et al,, 2004; Wang and Liao, 2002). A final solution
applicable to the various types of radiographs has yet to be found,
however. In this work, a procedure using transversal gray level
profiles of the beads was employed, not only in the presence of
joint discontinuities, but in the discontinuity class as well. The
technique used in this work is innovative and more practical from
the point of view of developing semiautomatic or automatic Sys-
tems for the detection and classification of weld discontinuities in
radiographs.

Figure 2 illustrates didactically the shape of the transversal gray
level profile of a weld bead in a radiograph. The vertical axis corre-
sponds to a scale of gray (normally 256 levels), while the horizontal
axis corresponds to the vertical dimension of the weld. Since the
aim of the work is only to find and classify discontinuities present
in the weld, the horizontal parameter of the graph, which repre-
sents the base metal region, can be discarded to reduce computa-
tional calculations and optimize the development of the classifiers.

(d)

(e)

®

Figure 1 — Examples of radiographic images used for each class of
discontinuity (Silva et al., 2005): (a) slag inclusion; (b) undercutting;
(c) lack of penetration; (d) porosity; (e) lack of fusion; (f) cracking.
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Figure 2 — Example of a transversal gray level profile of a weld bead in
a radiograph (in this case, without discontinuities).

The part of the image corresponding to the weld bead was visu-
ally extracted from the whole image so that the profiles traced con-
tained the least amount of irrelevant information possible for the
development of the classifier. It is enough to point out that the fol-
low-up to this work will involve the development of an image pro-
cessing technique for the automatic extraction of the bead, which
will later be connected to classifier algorithms developed in this
work. Figure 3 illustrates the extraction of the bead image from the
rest of the radiograph. Before the extraction of the weld bead, the
images were calibrated spatially as shown in Figure 3 so that the
transversal profiles had a precise vertical bead measurement.
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Figure 3— An example of a radiographic image used, showing
identification label and calibration measurement, and the respective
bead image extracted from the original pattern.

The profiles were extracted from each weld image using a
software program with a simple transversal line technique (visual
detection of the discontinuity). The number of profiles available for
each discontinuity class was as such:

W Jack of fusion: 64

M undercutting: 95

M lack of penetration: 151
B slag inclusion: 154

B cracking: 265

B porosity: 412

M no discontinuities: 467.

After acquisition of the profiles (signals), three types of process-
ing were carried out.

W First, the profiles were standardized in relation to their respec-
tive amplitudes; a procedure carried out by dividing each point of
the profile by its maximum gray level value so that all the profiles
had amplitudes situated on the scale from zero to one.

W Second, the profiles were treated for noise reduction by using
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the low-pass Savit7ky~Cn]ay filter which has the advan{-asc of not
altering the amplitudes of the signals as much as the average mo-
bile filter. Empirically, the best performance of this filter was ob-
tained for an operational window with eight points and polynomi-
al of the second order. Taking into account that the original
radiographic images had different resolutions, due to their distinct
origins and the equipment available at the time of film digitization,
the profiles contained a quantity of distinct points making the cor-
rect implementation of the classifiers impossible. In this case, the
profiles were interpolated using the fast Fourier transform tech-
nique so that they would contain the same number of profile points
with the smallest size (276).

M Third, the discontinuities are situated randomly in the vertical
dimension of the bead, except lack of penetration, which is nor-
mally found in the center of the profile. This variation of position
certainly increases the intraclass variation, making the training of
the classifiers more difficult and therefore affecting their perfor-
mance. Consequently, it was deemed that all the discontinuities
should be adjusted to a position to the right of the average (center)
of an estimated gauss curve based on each profile (Liao and Li,
1998; Liao and Ni, 1996; Liao et al,, 1999). The profiles that origi-
nally contained discontinuities situated to the right of the peak or
in the center of the gauss curve did not need to have their position
inverted.

Figure 4a shows an example of an original profile with stan-
dardization of amplitude and number of points, but without noise
reduction. Figure 4b shows the same profile after application of the
low-pass filter. Figure 4c shows the profile after inversion of the dis-
continuity position in relation to the center of the adjusted gauss
curve.
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Figure 4 — Profile filtering and adjustment: () original profile with
standardization of amplitude and number of points; (b) profile after
application of Savitzky-Golay filter and the gauss curve; (c) profile after
inversion of discontinuity posttion in relation to the center of the gauss
curve.

Nonlinear Pattern Classifiers: Architecture and Classifier
Training

The nonlinear classifiers were implemented with neural net-
works of two trained layers with algorithms for backpropagation of
error (Haykin, 1994). The output layers of the networks contained
seven neurons of the hyperbolic tangent type due to the seven




Table 1. Optimization of the number of neurons in the intermediate Ilayer of the nonlinear classifier

N i Training Set Data Test Set Data
gﬁ:ﬁiﬁiﬁiﬁ?ﬁ With Without With Without.
Reclassification Reclassification Reclassification Reclassification
10 100 99.93 97.72 96.89
20" 100 100 99.38 97.72
30 100 100 98.96 97.10
40 100 100 98.14 95.45

* best result with the test data

classes of patterns present in the data. A question that occurs in the
development of a nonlinear classifier regards knowing the ideal
number of neurons that should be used to permit the best perfor-
mance of the classifier. In this work, the number of neurons used in
the intermediate layers was varied and the performance obtained
for a pair of randomly chosen sets for training and testing were ob-
served. The training was carried out up to 3000 epochs or error of
training equal to 0.001, using a learning ratio o variable and mo-
ment f = 0.9 (Haykin, 1994), adjustments that allowed for faster
convergence of training after empirical tests.

Nonlinear Pattern Classifiers: Accuracy of the Classifiers

One of the greatest concerns in recognizing the patterns is the es-
timated accuracy of the classifiers that can be calculated using
weighted averages of correctness between the training and test data
(Diamantidis et al,, 2000; Efron and Tibshirani, 1993; Efron and Tib-
shirani, 1995; Silva et al., 2005).

The pronounced difference in the quantity of data between the
pattern classes studied could favor the correctness classification of
those classes with more data in terms of developing a training algo-
rithm for backpropagation of error. A large amount of data tends to
significantly influence the calculation of training error. In this case,
an acceptable solution that, in the majority of cases, produces good
results, is replicating data of the class with the least number of data
until it reaches the number of data of the most favored class. In
order, then, to estimate the classification accuracy of the nonlinear
classifier used in this work, ten random selections of Ppairs for train-
ing and testing sets were carried out in the following manner: 15%
were extracted from the total of the discontinuity-free class, which
had the largest quantity of data (467), to make up the test sets-(this

(without reclassification) and 99.38% of correctness with reclassifi-
cation, the best indices of correctness with the testing set. The classi-
fication criterion for reclassification considers the greatest output
neuron (in this case, seven outputs due to seven pattern classes) of
the classifier as the indicator of the tested pattern class input. The
without reclassification criterion is the most conservative because it
uses as the output class indicator the only positive output. These
criteria of classification are explained in detail by Silva et al. (2001).

Figure 5 shows the training and test curves resulting from train-
ing with the 20 neurons in the intermediary layer, showing that the
training was interrupted with fewer than 1000 epochs due to vali-
dation control.
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percentage was chosen empirically). That is to say, 69 data were
chosen for test sets and the others were left over to make up the
training sets (398 data). The same was done with the other classes
once their data had been replicated until they reached the number
of data for training and testing sets as in the discontinuity-free class.
All classes then had 69 data for test sets and 398 data for training
sets. This procedure guaranteed that the chosen data for testing sets
were not used for training sets, and all classes had the same quant-
ty of data for the two sets.

The classifier performance results, as well as the estimated accu-
racy (here considered the arithmetic mean of the performances ob-
tained with the test sets), are presented in the tables. Also, the con-
fusion tables of dlassification between dasses are presented for the
set with the performance nearest to the estimated accuracy.

RESULTS AND DISCUSSIONS

Optimization of the Number of Neurons in the Intermediate
Layer

After carrying out the random selections as described above, a
study was carried out to optimize the number of neurons to be
used in the intermediate layer of the nonlinear dlassifier with these
new sets, using only a pair of training / testing sets among the ten
selected. In order to control overtraining and guarantee generaliza-
tion of the classifier, 15% of the training data were extracted (85% of
the original data) to make a validation set. Table 1 shows the results
obtained, where it is evident that only 20 neurons in the intermedi-
ate layer obtained 100% of correctness with the training data and
97.72% for the test data under the most conservative conditions
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Figure 5 — Training error and validation error curves using 20
neurons in the intermediate layer.

Estimated Accuracy of Classification
Table 2 contains all the results of the performance obtained with

the test sets chosen for the with and without reclassification criteria, -

as well as the number of epochs of interruption of training by the
validation control. The criteria of validation was fixed in 100
epochs, that is, if the error of validation was maintained unaltered
or grew over 100 epochs, training was interrupted and the values of
the synapses and bias (Haykin, 1994) were adjusted to the values
that resulted in the smallest error of validation,

The resultant average correctness, for our estimate of classifica-
tion accuracy, was 95.0% for the test data without reclassification, a
very satisfactory index. With reclassification, it reached 98.4% cor-
rectness, an index very close to that obtained on average with the
training sets (about 100%). Another result worth mentioning is the
small standard deviation ~2.1% for the test data without reclassifi-
cation. This proves the reliability of the classification accuracy esti-
mation and the classification of the main types of welding disconti-
nuities present in traversal gray level profiles submitted to
preprocessing. The generalization of the classifier was provenin the




Table 2 Calculation of the classification accuracy for the nonlinear classifier

Data Sets Training Data Test Data Number
With Without With Without of Epochs
Reclassification Reclassification Reclassification Reclassifiation

1 100 100 100 99.0 920

2 100 100 98.6 934 1044

3 100 100 98.0 94.6 948

4 100 100 97.6 92.0 923

5 100 100 98.0 94.6 940

6* 100 100 97.3 95.3 940

7 100 100 99.0 96.7 939

8 100 100 97.8 9.1 1044

9 100 100 99.4 97.1 949

10 100 100 98.2 95.5 1135
Mean 100 100 98.4 95.0
Mean ¢ 0 0 0.9 21

* set that was closest to the average
¢ = standard deviation

small differences in pérformance between the training and testing
sets. Figure 6 shows the training and validation curves of the sixth

16 set of Table 2, the set that was closest to the average (the one that
. could be considered the most representative in terms of correctness

44 of classification expected).
12 Training Error In Table 2 there is only the general average correctness of all
s++++=++ Validation Error classes, as well as the indices of each set, without an idea of the cor-
1.0 Data Set 6 reciness and errors of each class. Thus, Table 3 was set up, referring
05.] to the sixth set of Table 2 that represents the indices of correctness
5 ’ and error (confusion) of each class with respect to the other classes.
£ o6 In this type of table, we have the lack of fusion class in the first line
w and in the first column of Table 3. This class’s result was 53 correct-
0.4+ ly classified data among the 69 used in the test set. Sixteen profiles
02 were classified with o class, that is to say, all the outputs of the neu-
rons were negative, remembering that in the condition of Table 3
00+ one class only is indicated when it has only one positive output
1 among the seven neurons of the seven classes studied. For the lack
02 ¢ 20 wo 00 50 1000 of penetration class, 66 data were correctly dlassified and three data
confused with the porosity class, and so on for the other classes.
Numbers of Epochs Note that in Table 3, all the profiles were dlassified correctly for the
undercut and sag inclusion dlasses. Table 4 gives the same informa-
tion, but with indices of correctness and confusion in percentages. It
Figure 6 — Training and validation error curves usin g 20 neurons in is worth noting once again that Tables 3 and 4 are for the most con-
the intermediate layer of set six. servative situation of classification with the test data. For the case of

Table 3 Confusion table for test set 6 for the results without reclassification (results of confusion in quantity of profiles)

Lack of Lack of Undercut  Crack Slag Porosity No None More than

Fusion Penetration Inclusion Discontinuity One
Lack of fusion 53 0 0 0 0 0 0 16 0
Lack of penetration 0 66 0 0 0 3 0 0 0
Undercut 0 0 69 0 0 0 0 0 0
Crack 0 0 2 67 0 0 0 0 0
Slag inclusion 0 0 0 0 69 0 0 0 0
Porosity 0 0 0 0 0 68 0 1 0
No discontinuity 0 0 0 0 0 0 68 1 0

Table 4 Confusion table for test set 6 for the results without reclassification (results of confusion in percentage of correctness/ermor)

Lack of " Lack of Undercut  Crack Slag Porosity No None  More than

Fusion Penetration Inclusion Discontinuity . One
Lack of fusion 76.81% 0 0 0 0 0 0 23.19% 0
Lack of penetration 0 95.65% 0 0 0 4.35% 0 0 0
Undercut 0 0 100% 0 0 0 0 0 0
Crack 0 0 2.9% 97.1% 0 0 0 0 0
Slag inclusion 0 0 0 0 100% 0 0 0 0
Porosity 0 0 0 0 0 98.55% 0 1.45% 0
No discontinuity 0 0 0 0 0 0 98.55% 1.45% 0




Table 5 Confusion table for test set 6 for the results with reclassification (results of confusion in quantity of profiles)

Lack of

Lack of Undercut
Fusion Penetration
Lack of fusion 61 0 0
Lack of penetration 0 66 0
Undercut 0 0 69
Crack 0 0 2
Slag inclusion 0 0 0
Porosity 0 0 0
No discontinuity 0 0 0

Crack Slag Porosity No
Inclusion Discontinuity
8 0 0 0
0 0 3 0
0 0 0 0
67 0 0 0
0 69 0 0
0 0 69 0
0 0 0 69

Table 6 Confusion table for test set 6 for the results with reclassification (results of confusion in percentage of correctness/error)

Lack of Lack of Undercut

Fusion Penetration
Lack of fusion 88.41% 0 0
Lack of penetration 0 95.65% 0
Undercut 0 0 100%
Crack 0 0 2.9%
Slag inclusion 0 0 0
Porosity 0 0 0

Crack Slag Porosity No
Inclusion Discontinuity

11.59% 0 0 0

0 0 4.35% 0

0 0 0 0
971% 0 0 0

0 100% 0 0

0 0 100% 0

reclassification, error indices are even less, as can be seen in Table 5
in terms of quantity of data and Table 6 in percentage terms.

Table 6 shows that the no discontinuity, porosity and sag inclu-
sion classes present indices of 100% correctness for set 6, and only
for the lack of penetration and crack classes have small indices of
confusion with the porosity and undercut classes, respectively. The
largest index of confusion was the lack of fusion class with the crack
class (11.59%), which is not critical, since both discontinuities imply
" arejection and repair of the weld according to norms and interna-
tional codes.

In general terms of classification, the results are extremely satis-
factory since the estimated accuracy even for the most conservative
situation was 95.0%, a value above the results obtained in other
works (Liao and Ni, 1996; Silva et al., 2004). It is evident that these

results were possible due to the processes carried out on the profiles

“before being used in the development of the classifiers, something
that had not been done in previous works (Padua et al., 2003; 2004).
It should also be pointed out that the results obtained in this work
have greater reliability from the statistical point of view due to the
amount of data used, as well as the number of sets used to estimate
the classification accuracy. The use of gray level profiles is more
promising for the development of automatic radiographic testing
systems for weld joints, since it does not require the complicated
techniques of image segmentation and extraction of the discontinu-
ity characteristics to create the input data for the classifiers. These
complicated techniques make it more difficult to develop a system
that can be applied efficiently on various types of radiographicjoint
images existing in the industrial field. This work can already be
considered a detection algorithm for operational discontinuities,
since the “no discontinuity” class was not confused with any other
type of discontinuity:.

The work presented here will be continued with research di-
rected toward the development of the first part of the system, ex-
traction of weld beads from the radiographs and automatic ac-
quisition of transversal profiles. This latter part will afterwards
be connected to the algorithms developed for the work presented
here. Some work has already been done on this by Felisberto et
al. (2006).

CONCLUSION

Using the classification results presented here, it is shown that
the transversal profiles can be used as input data in the nonlinear
classifiers for identification and classification of the main types of
discontinuities, giving good dlassification results. The profiles must
first be put through a Savitzky-Golay filter for noise reduction,

undergo standardization of amplitude and quantity of points, and
have the position of the discontinuities adjusted, reducing interclass
variance. The optimization of the number of neurons used in the in-
termediate layer, as well as the utilization of validation sets to con-
trol the best moment to interrupt training, permitted the generaliza-
tion of the classifier for the test sets. The methodology applied is
capable of distinguishing signals with and without discontinuities
without creating classification errors.

The techniques presented in this work are innovative, and are
an incentive to continue to work for the development of an auto-
matic or semiautomatic system for interpretation of digitized radi-
ographs of soldered equipment.
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