Object recognition from a large set of visual features and 3D range data

P. Espinace, D. Mery and A. Soto
Computer Science Department
Pontificia Universidad Catélica de Chile
Santiago, Chile
Email: [pespinac,dmery,asoto]@ing.puc.cl

Abstract—In Mobile Robotics, recognizing different objects
in a given environment is a key requirement for several high
level tasks, such as scene understanding, object manipulation,
and human-robot interaction. To date, several object recogni-
tion approaches have been developed, however, most state-of-
the-art methods do not take advantage of a huge pool of visual
features and the embedding of the objects in 3-D space. In this
paper, we present our approach to build category-level object
detectors that optimize the use of the available information by
using a two steps procedure: i) Offline training to extract a
very large number of visual features from a given training set
and to select the most relevant ones to build a particular object
model, and ii) Online object detection to use the resulting object
model in order to search for objects in images acquired by a
mobile robot. OQur detectors use a standard AdaBoost method
and, similar to previous work, a cascade of weak classifiers is
used to focus on discriminative features and quickly discard
unlikely image areas. In order to take advantage of the three-
dimensional embedding of the searched objects, we augment
the visual features with physical properties such as object size,
height and internal disparity, acquired using a 3D range sensor
on the robot and standard projective geometry. Results show
that our method is able to optimize the used features, achieving
a performance that is comparable to state of the art approaches
using very few features in each object model, and that adding
3D based physical object properties increases performance with
respect to a purely 2D visual approach.

I. INTRODUCTION

The human visual system is extremely robust in recog-
nizing and amazing amount of different objects on several
different types of scenes, despite of lightning conditions,
view point, occlusion, among many other difficulties. In
the case of computer based systems, such as a mobile
robot, this task has proven to be extremely challenging.
State of the art in this field can be measured in contests
such as the Semantic Robot Vision Challenge, that poses the
challenge of downloading images from the web on-the-fly,
learning models of the objects, and then driving around the
environment finding them. Most work in this competition
focuses on filtering downloaded images and finding salient
regions of the visual field and environment [1]. Also, the
Pascal Visual Object Classes Challenge poses the goal of
recognizing objects from different classes in natural scenes.
Some of the most successful results in previous versions
of this contest were achieved by the parts based model

of Felzenszwalb et. al. [2], and the two stages detector of
Harzallah et. al. [3].

Despite good results achieved so far, most state of the
art methods do not use the information available from the
environment in a proper way. One of the main reasons for
this is that traditionally it is recommended to extract a low
number of features in order to avoid high computational
cost, which leads to ignoring or poorly using a big amount
of features that can potentially be useful. This weakness
is shared by most pattern recognition methods [4] [5].
Although it is true that using a small number of features
is essential for building efficient online algorithms, using
today’s computational capabilities we are able to extract a
very large number of features in an off-line process in order
to investigate which features are really relevant for a given
task, and use these features in an online procedure to classify
new samples. To formalize this idea, we developed a highly
general pattern recognition methodology applied to image
analysis, which was presented in [6] with encouraging
results. In this work, we apply the developed methodology
to build category-level object detectors that choose the best
group from a big set of available features, in order to build
optimal object models. Our models are augmented by using a
pyramid of features, similar to the one used in [7], to obtain
global and local object features instead of global features
only.

A second weakness of traditional object recognition meth-
ods is that most of them rely in two-dimensional image
data only, ignoring the embedding of the objects in three-
dimensional space. Although there are notable exceptions
to this statement, such as the work by Hoiem et. al. [8],
the use of 3D information is largely ignored, despite the
fact that currently available sensors provide a very reliable
depth estimation for a given scene. Considering this, we
augment the visual features given by a 2D image with
physical properties such as object size, height, and internal
disparity, acquired using a 3D range sensor and standard
projective geometry. We use these physical properties as
priors when searching for different objects within an image,
allowing us to increase the performance and efficiency of
our method.

Accordingly, the main contributions of this work are:
1) Applying the methodology presented in [6] to build



category-level object detectors that select a suitable set of
discriminative visual features from a huge pool of potential
features, and ii) Using 3D information to estimate physical
object properties that allows us to use semantic information
to boost detector performance.

The rest of this paper is organized as follows. Section II
presents our problem formulation, showing how we integrate
an object recognition method with geometric based priors.
Section III describes our method for building category-level
object detectors based on the methodology presented in
[6]. Section IV shows how we can use 3D information to
compute each of the priors included in our model. Section
V shows the results for our approach. Finally, Section VI
presents the conclusions for our work and future avenues of
research.

II. PROBLEM FORMULATION

In this section we present our mathematical model to solve
the problem of recognizing objects in a single image I, using
the information that can be extracted from the image itself
and from a depth map D given by a 3D range sensor. The
formulation of the problem is based on recognizing objects
in a given set and is based on a probabilistic framework.

Considering an image may contain multiple objects, and
multiple instances of each particular object, we decompose
each image into a set of windows. These windows are
assumed to be independent and we can evaluate each of
them using a sliding windows procedure at different image
scales, thus, our problem is to compute

p(w; o|vi, di) €))

that represents the likelihood that object o is present in
window i, given the visual information vi that we can extract
from window ¢ of image I, and the depth information di that
we can extract from window ¢ of depth map D. Using Bayes
rule, we can transform our problem into:

p(Vilw; o, di) * p(w; o|di)
p(vi|di)

As both information sources are given by independent
sensors, the information contained in one of them does not
influence the content of the other one, thus, p(vi|di) can be
transformed into p(vi), which can be assumed to be a flat
prior, and p(vi|w; ., di) can be transformed into p(vilw; o),
that represents the likelihood of extracting information vt in
window ¢ of image I given that object o is present in that
window. Section III gives details on how we compute this
term by building category-level object detectors for each of
the objects in a given set.

The remaining term in our equation, p(w; ,|di), represents
the likelihood that object o is present in window 7 given only
the information that can be extracted from window ¢ in depth

p(w; o|vi, di) =
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map D. Here, we could directly use the depth values inside
the given window and estimate how likely are those values
given that object o is present on it, however, we can also
use this depth information to infer higher level properties
of the object contained in the window, using the sensor
parameters and standard projective geometry, and calculate
how likely is that window to contain object o given this
high level properties. As we will show later, this kind of
properties are much more useful to improve the efficiency
and performance of the object detection task. In our case,
the properties we estimate are object size s, object height
h, and object internal disparity d, all measured in meters.
Thus, we transform the term p(w; o|di) in p(w; ols, b, d).
Note that s, h and d are estimations for the size, height,
and internal disparity not for object o, but for any potential
object that would be contained inside window ¢, thus, we are
measuring the likelihood that object o is present in window
¢ given that any object contained in window ¢ should have
the calculated values for the used properties.

Using the Bayes rule once again, we can transform
p(w; 0ls, h,d) into:

p(8|Wi0, b, d) * p(w; |k, d)
p(s|h,d)

Assuming that, once calculated, the properties s, h, and
d are independent, we can transform p(s|h,d) into p(s),
which we can assume as a flat prior (thus it becomes a
constant multiplication term), and transform p(s|w; o, h, d)
into p(s|w; ,). Analogously, we can transform p(w; o|h, d)
into:

s,h,d) = 3)

p(wi,o

p(h‘wLOa d) * p(wi7o|d)
p(h|d)
And we can transform p(h|d) into p(h), assuming a flat
prior, and transform p(h|w; o, d) into p(h|w; ,). Finally, we
can transform the term p(w; ,|d) into:

p(wi,o‘h7d> = (4)

g = Pldlwio) * p(wio)
) =
p(d)
And we can assume p(w; ,) and p(d) as flat priors. Using
all this process we have transformed equation 3 into:

p(wi,o (5)

p(wi,0|5, h,d) =« *p(5|wi,0) *p(h|wi.,0) *p(d|wi70) (6)

Continuing with a similar procedure can turn the prob-
ability of w;, given any number of properties into the
multiplication of a constant term times the product of the
probabilities of each of the properties given w; ,. Each of
these terms represent the probability of a certain property
to have the estimated value given that object o is present in
window 7. Section IV shows how we calculate these terms
in our method.



Given our analysis, we have transformed our model in
equation 1 into:

p(w; o|vi, di = (s, h,d)) = a* p(vilw; o) * p(s|wie) * ...

p(hlwio) * p(dfwi,o)
(N

Note that the analysis and final model is similar to that
presented by Torralba in [9] applied to contextual priming
for object detection. In our case, we use priors based on
physical object properties, which for the case of a mobile
robot can be estimated using a 3D range sensor, however, the
methodology is highly general and can incorporate context
or any other kind of prior.

Using the proposed model, we can estimate the proba-
bility that any object in a given set is present in any of
the windows. As we mentioned earlier, a sliding window
approach can be used to evaluate every window and find
the objects that are present in a given image, however,
we should decide when the method says that an object is
present according to the calculated probabilities. For this
purpose, we compute suitable detection thresholds according
to training data, as will be shown later. Additionally, some
windows may overlap, producing overlapping detections. In
cases where two highly overlapping detections occur, we
assume the detection with the higher probability to be the
correct one.

III. CATEGORY-LEVEL OBJECT DETECTION

In this section we present our approach to category-level
object detection, based in the methodology presented in [6],
and show how we compute the term p(vi|w; ,) of our model.
We base our description on the detection of a generic object
o, which can be instantiated to any object in a given set.

The key idea behind the methodology presented in [6] is
to use an offline procedure to extract a very large number of
features from a training set built for the classes we want to
separate, and select only those features that are relevant for
the separation of the classes. Then, in an online procedure,
we can use only the selected features in order to classify
new samples. Our claim is that the more features extracted
during this process, the more alternatives a selection method
has for building distinctive class models. In our case, we
model object detection as a two classes problem: object
and background. The background class should represent
everything that is not the object we are searching for, thus,
it must be very diverse. If several classes are available,
representing all possible objects in the environment, we can
use a one-vs-all procedure for building each of the object
classifiers.

In order to increase the prediction power of the described
methodology, we use a pyramid of features, similar to the
one used in [7], that allows us to obtain the same base
feature for different patches within a single object instance,
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Figure 1. Three levels image pyramid built for extracting features
on different patches of an object instance. Example for one instance
of the PC Monitor class

for different number of partitions. This method not only
considerably increases the total number of available features,
but also allows distinctive internal parts of an object to gain
importance, allowing us to extract global and local image
features. We use a three level pyramid, obtaining a total of
21 image patches, as shown in the example of Figure 1 for
an instance of the PC Monitor class. For each of the patches
in the pyramid, we extract 3 groups of features:

1. Grayscale features, providing the mean and standard
deviation of the intensity value within patch.

2. Gabor features based on 2D Gabor functions, i.e.,
Gaussian-shaped bandpass filters, with dyadic treatment
of the radial spatial frequency range and multiple
orientations, which represent an appropriate choice
for tasks requiring simultaneous measurement in both
space and frequency domains. We use 8 different scales
and 8 different orientations and calculate the mean and
standard deviation of the convolved region.

3. Histogram of Oriented Gradients [10], that provide a
measure of the magnitude of the gradients of a patch
pointing in different directions. We use 4 different
number of beans in the histograms.

In total, we use 2 Grayscale based features, 128 Gabor
based features, and 66 Histogram of Gradient based features,
each of which is calculated for the 21 available patches,
obtaining 4116 features for each object instance.

As a selection method, our approach learns different
object models using AdaBoost, starting from 4116 weak
classifiers (one for each feature), and increasingly adding
one weak classifier at a time until a required performance
is met for the final strong classifier. Original AdaBoost
procedure uses a strong classifier that adds the votes of each
weak classifier, which are either —1 orl, and the presence
or absence of the object is given by the sign of the final
output. Using this method we would obtain a binary output,
however, our approach needs a continuous value between
zero and one as it is based on a probabilistic framework.
Considering this, instead of using the sign, we perform a
min-max normalization over the above function output. The
minimum and maximum values that we can obtain from the



method are:

T T
arg min(z ag * he(z)) = — Z oy 8)

t=1 t=1

and

T T
arg max(z o * he(z)) = Z o 9)
t=1 t=1

that would be the cases of all weak classifiers voting that
the object is not present (every weak classifier output is —1),
and that the object is present (every weak classifier output
is 1). The min-max normalization value is given by:

_ o) — (=2 o)

H2(2) (10)
Sy — (= Yy o)
which can be transformed into:
T T
Haw) = =t F a0y
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The output of this new function has values between zero
and one, and is higher if there are more weighted votes
supporting the presence of the object and lower if there
are less weighted votes supporting the presence of the
object, thus, we consider this new function a distribution of
the probability of an object instance to belong to a given
class. As the new samples we want to classify are the
pieces of image inside each of the windows we broke our
original image into, and they are represented by the visual
information (selected features) we extract from them, the
obtained distribution represents the term p(vi|w;,) of our
model.

It is important to remark that, while the number of
available features is in the order of thousands, all our
built classifiers selected less than 100 features, proving the
robustness of the methodology presented in [6] in terms
of selecting only relevant features for each object model.
Also, similarly to other approaches [11], we arrange the
voting scheme in a cascade that only uses each further weak
classifier if the performance until the previous one is above
a threshold chosen during training. This cascade allows us to
discard unlikely image places quickly and fits perfectly with
further procedures incorporated in our approach, allowing
them to increase performance even more, as we will see
in section IV. The final decision about the presence of the
object is made according to the threshold estimated from
training data using all the selected features, if the cascade
is able to reach its deeper level.

IV. GEOMETRIC PRIORS

No matter how good an object detector works, in real
world applications there are always situations where an
object will not be found, either because of point of view,
poor lightning conditions, occlusion, etc. For such cases, a

possible solution approach would be lowering the detection
threshold for the object, however, this carries the cost of
an increasing number of false positives. In these situations,
using additional sources of information can be crucial for
helping in avoiding the new false positives, allowing to
lower the threshold for finding more object instances at,
ideally, no additional cost. In our approach, we provide such
capabilities by using a 3D range finder that provides depth
maps associated to the images we already have.

Given an image and its associated depth map, we can use
the camera parameters and standard projective geometry in
order to calculate how many centimeters does each pixel
cover. Knowing this, we estimate three different sources of
information about the objects contained in a given window:
i) object size, i.e, width and height in centimeters, ii)
object height, i.e, distance from the floor to the object in
centimeters, and iii) internal disparity, i.e, standard deviation
of the distances inside the object in centimeters. Each of
these sources of information can provide a prior for the
probability of a window containing the object, by evaluating
them over Gaussian distributions estimated from training
data for each of the objects. Consequently, they provide the
geometrical priors p(s|w; o), p(h|w;,o), and p(d|w; ) of our
model.

The obtained geometrical priors not only increase the
performance of our method, as we will show in section
V, but also increase the methods computational efficiency
by taking advantage of the cascade nature of the resulting
classifiers, applying the priors at each level of the cascade.
By doing this, several windows that have probability values
above a given threshold may be discarded at early stages of
the cascade if the priors show that according to size, height,
or disparity, this probability is below the threshold.

V. RESULTS

In this section we present experimental results for our
method. We made tests with seven different object classes:
PC monitor, door, railing, clock, screen, soap dispenser, and
urinal. Figure 2 shows detection results for our method with
three of these objects. We can see that we can find two
instances of the same object, PC monitor, in a single image,
big objects such as screen, and small objects such as clock.
The screen and clock where both found on the same image
by running a single object detector at a time, however, if we
run both of them together, both objects would be found.

Figure 3 shows how each physical property of objects
helps in the object detection task. In figure 3(a), we see an
example image where a door would normally be detected
in many places by using only image information, however,
because doors usually have a predictable size, the classifier
was able to rule out a number of these hypotheses (figure
3(b)) to find the only true positive. Similarly, we see in
figure 3(c) and 3(d) that a number of false detections were
avoided by using the estimated height prior. Finally, we see



(a) PC Monitor

(b) Screen

(c) Clock

Figure 2. Object detections for three different objects.

(a) Image-only (b) With size attribute

(c) Image-only

|

(d) With height attribute

(e) Image-only (f) With disparity attribute

Figure 3. In (a) and (b) is an example of the influence of the size prior
in the object detection when searching an instance of the door class. In
(c) and (d) is an example of the influence of the height prior in the object
detection when searching an instance of the door class. In (e) and (f) is an
example of the influence of the disparity prior in the object detection when
searching an instance of the door class.

in figures 3(e) and 3(f) that false door detections were
discarded due to the fact that the depth of doors does
not usually have high variance (disparity estimated prior).
In addition, since we were using a cascade of classifiers,
many windows were discarded at early levels of the cascade
because they were unlikely in terms of height, size, or
disparity. Thus, we were both able to increase performance
using the physical attributes of objects and at the same time
decrease the computational demands.

In addition, we evaluated the classification performance
of our method using different combinations of the physical
properties by running the classifiers over several images cor-
responding to an office environment dataset. The comparison

1.0

4~——a image-only (AUC=0.281)
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Figure 4. Precision-Recall curve comparison for our method and
the method by Felzenszwalb et al.

metric is the area under the Precision-Recall curve for each
of the tested objects (screens and clocks were not present in
this dataset). The best classification performance is obtained
using all physical properties, as can be seen in the following
table:

Area under the P-R curve

Obj. Im Ht. Sz. Disp. All
door 0474 0494 0496 0469 0.503
railing 0.556 0.648 0.557 0573 0.671
monitor | 0.281 0313 0.289 0.273  0.317
soap 0.017 0.028 0.018 0.017 0.123
urinal 0.008 0.011 0.011 0.010 0.02

Finally, Figure 4 shows a comparison between our clas-
sification performance and the approach of Felzenszwalb
et al. [2] for the monitor class. We can see that the area under
the curve shows better results for Felzenszwalb approach,
however, this fact is greatly influenced by a very wide area
where his approach is much better than ours, which are the
low threshold areas, while our approach performs better in
high threshold areas, which are the one the method selects
for our object detection.

1.0



VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that, by applying the
methodology in [6] and a standard AdaBoost classification
procedure, we can build category-level object detectors
that have good results for a wide variety of classes. The
performance of the method is increased by using physical
object properties obtained using a 3D sensor and standard
projective geometry.

Our mathematical formulation allows more physical prop-
erties or any other source of prior information to be easily
included in the model, thus, part of our future research will
be focused in including some of these information sources.
Particularly, work is already being done for incorporating
higher level context, including spatial, temporal and object to
object relations that can help in new object detections, such
as the ones shown in [12]. Additionally, we are working
towards incorporating planning strategies that can help in
increasing the efficiency and performance of current object
detection. Finally, our goal is to use object detection as a
tool for developing higher level robot tasks, such as human
robot interaction and office delivery applications.
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