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Abstract—Object tracking in video sequences has been
extensively studied in computer vision. Although promising
results have been achieved, often the proposed solutions are
tailored for particular objects, structured to specific conditions
or constrained by tight guidelines. In real cases it is difficult
to recognize these situations automatically because a large
number of parameters must be tuned. Factors such as these
make it necessary to develop a method robust to various
environments, situations and occlusions. This paper proposes a
new simple appearance model, with only one parameter, which
is robust to prolonged partial occlusions and drastic appear-
ance changes. The proposed strategy is based on covariance
descriptors (which represent the tracked object) and an on-line
nearest neighbor classifier (to track the object in the sequence).
The proposed method performs exceptionally well and reduces
the average error (in pixels) by 47% compared with tracking
methods based on on-line boosting.

Keywords-Object Tracking; Naive Bayes; Covariance De-
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I. INTRODUCTION

Object tracking of pedestrians, faces and generic objects

has been extensively studied in computer vision. High per-

formance has been achieved [1], [2] but proposed algorithms

are highly structured and often restrictive. Generally they are

directly related to the type of object being tracked (training

off-line [3]) or the environment in which the object is located

(background subtraction [4]). Thus, object tracking under

practical conditions is still an unsolved problem.

In general terms, a tracking system has three compo-

nents: i) image representation, ii) appearance model and

iii) motion model. Currently a variety of methods exist

to create an appearance model and many use statistical

information which is either defined manually or trained

during an initial input [5]. These methods are simple but

they often encounter difficulty when the tracked object’s

appearance changes significantly within the video sequence.

This led to the development of specific methods that were

able to adapt the model to appearance changes, they are

known as Adaptive Appearance Models [6], [7]. In another

method, the appearance model is subject to weak classifiers

trained on-line which detect the followed object and/or the

background. This method, known as Tracking by Detection
[8], [9], [10], must balance between the tracking’s stability

and classifiers’ learning speed.

The most challenging problem in updating appearance

models is selecting new positive and negative samples.

Babenko et al. proposed an optimal sampling methodology

using classifiers based on an appearance model [8]. This

model uses an on-line boosting method to select the best

features to track in the object. Although this system achieves

high performance, tracking may fail when a prolonged par-

tial occlusion occurs because the balance between stability

and learning in this case is still an unsolved problem.

This investigation mainly focuses on the appearance

model and image representation. We propose a new simple

appearance model which is robust to prolonged partial

occlusions and drastic appearance changes. The proposed

strategy is based on covariance descriptors representing the

tracked object [11] as well as an on-line nearest neighbor

classifier to track the object in the sequence.

II. PROPOSED TRACKING SYSTEM

The proposed tracking system includes the three com-

ponents described above, image representation, appearance

model and motion model. The image representation and

motion model are constructed utilizing small variations of

existing methods. However, the proposed appearance model

is a new method called On-Line Naive Bayes Nearest

Neighbor, which is robust to prolonged partial occlusions

and drastic appearance changes.

A. Image Representation

Recently Tuzel et al. proposed a straightforward solution

that integrates multiple features which are simple and quick

to calculate such as gradient, color, position and intensity.

The method can even integrate features from infrared or

thermal cameras [11]. Compared to other descriptors such

as Haar [12] or histogram gradients, this descriptor provides

more information and is not restricted to the search window
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size like the others. The covariance features have been used

in a variety of applications and several improvements have

been proposed. Tuzel et al. and Yao et al. propose using

covariance features with a LogiBoost classifier for pedestrian

detection [13], [14]; Hu et al. proposed utilizing a modified

particle filter, where weights are proportional to a specific

measure applied to the covariance features [15]; Poriki et al.
proposed an algorithm to track objects using the covariance

features and Lie algebra to create an Adaptive Appearance
Model [7] .

The covariance descriptor proposed by Tuzel et al. in [11],

is formally defined as:

F (x, y, i) = φi(I, x, y), (1)

where I is an image (which can be RGB, black and white,

infrared, etc.), F is a W ×H × d matrix, where W is the

image width, H is the image height, d is the number of

features used, and φi is a function that relates the image

with the i-th feature, i.e., the function that obtains the i-th
feature from the image I . It is important to note that the

features are obtained at pixel level.

The use of the covariance matrix as a descriptor has

multiple advantages: 1) it unifies the target’s spatial and

statistical information; 2) it provides an elegant solution

to merge different features and modalities; 3) it has a low

dimensionality; 4) it is capable of comparing regions without

fixed window size restraints because region size is irrelevant,

the descriptor size is d×d; and 5) the covariance matrix can

be easily calculated for any region or sub-region.

The proposed method uses a 12 characteristic tensor F ,

which is defined by:

F (x, y, i) = [x y R G B |Ix| |Iy| . . .√|Ix|2 + |Iy|2 |Ixx| |Iyy| tan−1( IxIy ) S]T, (2)

where x and y represent the coordinates of each pixel;

R,G,B represent the red, green and blue values of each

pixel; |Ix|, |Iy|, |Ixx|, |Iyy| represent the image intensity’s

first and second derivative in x and y;
√|Ix|2 + |Iy|2

represents the second derivative’s magnitude; tan−1( IxIy )
represents the derivative orientation and S represents a

Saliency Map [16].

Regardless of the benefits a region’s representation as a

covariance matrix brings, the calculation for any window

or area of an image is computationally prohibitive if using

conventional methods. Tuzel et al. proposed a method to

calculate the covariance matrix for any rectangular window

or region of an image based on the integral image [11], [12].

Note that the proposed method only calculates the tensor

of patches of interest as opposed to the whole image.

Figure 1. Normalization patches method. Note that this creates a new im-
age while allowing the use of windows search with affine transformations.

Thus, we can use search windows with rotation or affine

transformations. The process involves extracting the desired

patch (in order to calculate the descriptor) from the original

image, creating a new image, and transforming it into a

rectangle of fixed size. As a corollary, another level of scale

changes normalization was included (Figure 1).

Finally, the covariance descriptor is not an element of

Euclidean space because it is a semi positive defined matrix

(SPD+). Therefore, the classical algorithms of machine

intelligence such as neural networks, PCA, LDA, etc.,

cannot be used. SPD+ matrices are included in Lie algebra

or Riemannian Manifolds geometry [17] so in order to

compare two covariance descriptors, we use the metric for

semi positive definite matrices Log-Euclidiana [18], which

is defined as:

ρ(X,Y) = ‖log(X)− log(Y)‖ (3)

where log(X) is the logarithmic map of the covariance

matrix, which is defined by the singular value decomposition

of matrix X. Let SV D(X) = UΣUT be the singular value

decomposition of X, where U is an orthonormal matrix and

Σ = diag(λ1, ...., λn) is a diagonal matrix of eigenvalues.

Therefore, the logarithmic map is defined as:

log(X) = U[diag(log(λ1), ...., log(λn))]UT (4)

This paper proposes a joint appearance model, mixing

both adaptive and detection models, that uses a Naive Bayes
Nearest Neighbor [19] classifier and covariance features

which we call On-Line Naive Bayes Nearest Neighbor .

On-Line Naive Bayes Nearest Neighbor (ONBNN)

State of the art image classification methods require an

intensive learning or training stage (using SVM, Boosting,

etc.). In contrast, non-parametric Nearest-Neighbor (NN)

based image classifiers require no training time and have

a variety of favorable properties. However, the large

performance gap between these two approaches rendered

NN-based image classifiers useless. In defense of the NN

algorithm Boiman et al. [19] proposes a trivial NN-based

classifier with a performance that ranks among the top

learning based image classifiers. This method employs
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Figure 2. Distribution of the four quadrants for which the covariance
descriptor is calculated.

NN-distances in the space of the local image descriptors

(and not in the space of images). NBNN computes direct

“Image to Class” distances without descriptor quantization.

The resulting NBNN classifier can be summarized by

algorithm 1, where C represents the classes of the classifier,

Ĉ is the estimated class and NNC(di) represents the

descriptor in the specific class C, closer to di, according

to nearest neighbors (NN). Note that the proposed tracking

system has two cases, the tracked object and everything else.

Algorithm 1 NBNN [19]

1: Compute descriptors d1, . . . , dn of the query image

2: ∀di ∀C compute the NN of di in C: NNC(di)
3: Ĉ = argminc

∑n
i=1 ‖di −NNC(di)‖2

Based on the idea of Boiman et al., we designed an

appearance model that classifies the patch of each new

sample with a NBNN classifier. In the proposed method

the NBNN classifier is updated in each iteration with new

positive samples and each sample is represented by the

patch’s covariance features. This way, we build a “database”

of the tracked object, which is necessary in the nearest

neighbor approach used by NBNN.

Each sample is represented by four covariance features,

where each descriptor represents one of the four image

quadrants (Figure 2). Thus, the appearance model is defined

as M(f, sf ); where f ∈ {1, 2, 3, 4} represents one of four

quadrants, sf ∈ {1, . . . , N} is the number of samples for

the specific f quadrant and M(f, sf ) is the f quadrant

covariance descriptor of the sample sf . Note that the samples

are specific to each quadrant, but they must be less than or

equal to N .

Next we define P (f) as a sample; where once again

f ∈ {1, 2, 3, 4} represents one of the four quadrants and

P (f) is the f quadrant’s covariance descriptor. Therefore,

the distance of a sample P to the model M is defined as:

d(M,P ) =
∑
k∈f

min
i∈sf

ρ(M(k, i), P (k))+λ‖M(k, i)−P (k)‖
(5)

where we use the metric defined in (3), since M(f, sf )
and P (f) are covariance matrices. Additionally, we add the

Euclidean distance relative to the original image, between

the quadrants centers. This way spatial information, which

was lost by using the patch instead of the full picture, can

be added. M(k, i) and P (k) are the patch’s center position

(x, y), with respect to the original image, which represents

M(k, i) and P (k) respectively and λ is the relevant factor

of the Euclidean distance in the model.

We defined a protocol to update the model, where the

quadrant with the lowest average distance to the model M of

the last tracked patch PB(f) is added. The average distance

between the quadrant and the quadrant’s model samples, is

defined as:

ω(M,P, f) =
1

|sf |
∑
i∈sf

ρ(M(f, i), P (f)) (6)

where f is the quadrant to which the average distance is

being calculated and |sf | is the number of samples for

quadrant f . We also define R(f, sf ) which maintains the

average distance to the model when adding a new sample

to the model (10).

Finally, the model is updated as follows:

f = argmin
i∈f

ω(M,PB , i) (7)

jf =

{ |sf |+ 1 if |sf | < N
argmaxi∈sf R(f, i) if |sf | = N

(8)

M(f, jf ) = PB(f) (9)

R(f, jf ) = ω(M,PB , f) (10)

Specifically, equation (7) seeks the quadrant of PB with the

lowest average distance to the model; equation (8) describes

how the index, where the sample (of the f quadrant) will be

added to the model, is selected and equation (10) saves the

sample’s average distance to the model. This information is

used to define the protocol update (8).

Because the model must be on-line, it is not possible

to add an infinite number of samples so the number N is

defined as the model’s memory. In order to grant some flexi-

bility when updating a quadrant, with N sample in memory,

the sample with greater average distance is removed and

the new sample is added. The distance that makes up the

samples ranking is calculated when the new sample is added

to the model. Thus, avoiding confusion from the prolonged
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partial occlusions in the model, we give a “threshold of

learning” for stability.

The moment the model is initialized, four quadrants of

the initial patch are added with an average distance to the

model equal to zero. For more details refer to Algorithm

2. It receives a set of parameters describing a set of search

windows, where (xi, yi) represents the center, (wi, hi) rep-

resents the width and height and θi represents the window’s

rotation. In our case, the algorithm delivers a parameter’s

configuration that gets less distance to the model, meaning

any algorithm can be used (particle filter, Kalman filter, etc.)

to estimate the next window.

Algorithm 2 On-line NBNN

Input: Dataset {xi, yi, wi, hi, θi}Ni=1, the model M and the

average distance stored R
1: for k = 1 to N do
2: I = getImage(xk, yk, wk, hk, θk) //Get warped image

3: Pk = getCovarianceDescriptors(I)
4: dk = d(M,Pk) //from (5)

5: end for
6: k∗ = argmink dk
7: PB = Pk∗

8: f = argmini∈f ω(M,PB , i)
9: if sf < N then

10: jf = |sf + 1|
11: else
12: jf = argmaxi∈sf R(f, i)
13: end if
14: M(f, jf ) = PB(f)
15: R(f, jf ) = ω(M,PB , f)
Output: xk∗ , yk∗ , wk∗ , hk∗ , θk∗

B. Motion Model

To highlight the appearance model’s real contribution,

initially we use a very simple motion model to perform

an exhaustive search at multiple scales (currently unused

patches with affine transformations), in a smaller area, inside

the last tracked patch.

Formally, let Ot−1
x,y,w,h be the tracked patch at time t− 1,

with center x, y and dimensions w, h. We define the search

area for the time t as St
x,y,w,h; where:

St
x,y,w,h = Ot−1

x,y,wα , hα
(11)

In the area St
x,y,w,h we search exhaustively from the patch

T t
x,y,w,h, where the T t

x,y,w,h centers are the coordinates of

each pixel, within the search area St
x,y,w,h and βn is a list

of scalars (Figure 3).

T t
x,yw,h = St

xp,ypwβn,hβn
(12)

Figure 3. Motion model description. The green rectangle represents the
last tracked patch Ot−1

x,y,w,h, the red rectangle represents the search area

St
x,y,w,h and the blue rectangles represent samples T t

x,y,w,h.

Finally, at moment t, the patch T t
xn,yn,wn,hn

with smaller

distance to the appearance model is selected. Note that the

motion model is completely independent of the appearance

model.

III. EXPERIMENTS

We tested our NBNN algorithm on a set of challenging

public and private video sequences. For comparison, four

different algorithms were used:

Online-AdaBoost (OAB): algorithm described in [9] and

implemented in [8], with search radius set to 35 pixels.

SemiBoost tracker: algorithm described in [20], this

method uses label information from the first frame only,

and then updates the appearance model via on-line

semi-supervised learning in subsequent frames. This

makes it particularly robust to scenarios where the object

leaves the scene completely. However, the model relies

strongly on the prior classifier (trained using the first frame).

FragTrack: described in [5], this algorithm uses a static

appearance model based on integral histograms, which have

been shown to be very efficient. The appearance model is

partially based on this algorithm which makes it robust to

occlusions.

Online-MILBoost (OMB): algorithm described in [8], this

method is a state of the art on-line boosting tracker with

the learning rate for the weak classifiers set to 0.85 and

the scalar for sampling negative examples set to 50. In our

experiment we also used five variations of the algorithm

OMB, where we set the labeling threshold for each sample

r in 1, 2, 3, 4 and 5.

ONBNN: for our proposed method (ONBNN), the values

of the parameters for all experiments were: λ = 0.05 ,

α = 2.5 y βn = {0.8, 1, 1.1, 1.3}.
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Video Clip OAB OMB 2 SemiBoost Frag ONBNN

Occluded Face 44 32.4 41 6 11.3

Occluded Face 2 21 22.8 43 45 12.9
Girl 48 33.3 52 27 13.9

Table I
AVERAGE CENTER LOCATION ERRORS (PIXELS). ALGORITHMS

COMPARED ARE ONLINE-ADABOOST TRACKER [9] WITH r = 1,
FRAGTRACK [5], SEMIBOOST TRACKER [20], OMB [8] WITH r = 2

AND ONBNN. BOLD RESULTS INDICATE BEST PERFORMANCE.

Initially, we performed an experiment on four public video

sequences (Surfer, Occluded Face, Occluded Face 2 and
Girl), against five different configurations of the OMB algo-

rithm. Where [8] provided a label of the object’s ground truth

center every five frames. Then we performed a second exper-

iment on three video sequences (Occluded Face, Occluded
Face 2 and Girl), against the three algorithms described

above and the OMB best average configuration (obtained

from the first experiment). In addition we also performed

a third experiment on sequences of private videos, without

comparison to the other four algorithms. This set of videos

includes pedestrian tracking and a complex background.

Finally, to measure performance, we used the average

center location errors (pixels), which calculates the distance

between the centers of the real position and estimated

position of the tracked object.

IV. RESULTS

In almost all experiments our ONBNN algorithm out-

performs the other four algorithms. In the Occluded Face
video, FragTrack performed the best because it is specifi-

cally designed to handle occlusions via a part-based model.

However, on a similar, but more challenging video, Occluded
Face 2, FragTrack performs poorly because it cannot handle

appearance changes well. This highlights the advantages

of using an adaptive appearance model. Moreover, the on-

line boosting and semi-boosting models have problems with

prolonged partial occlusion (table I).

Compared to a state of the art on-line boosting method

like Babenko’s et al. [8] proposed method (OMB), our

method produces better results (see table II). In summary,

our method managed to decrease by 47% the average error

(in pixels) compared to OMB’s best average setting.

Finally, our results were satisfactory. The ONBNN model

obtained a good performance in videos with high appearance

changes (Figure 4), quick object movement (Figure 4) and

partial occlusion. However, we obtained poor results in cases

of complete occlusion and erratic movements (Figure 5),

mainly caused by the simple motion model used.

For more resulting videos, go to

http://www.youtube.com/user/pcortez.

Video Clip OMB 1 OMB 2 OMB 3 OMB 4 OMB 5 ONBNN

Surfer 4.9 7.7 13.4 5,5 14.6 4.5
Occluded Face 18.4 32.4 19.6 31.6 34.4 11.3
Occluded Face 2 30.7 22.8 16.7 14.3 16.5 12.9
Girl 31.6 33.2 33.8 34.9 26.5 13.9

Table II
AVERAGE CENTER LOCATION ERRORS (PIXELS). ALGORITHMS

COMPARED ARE OMB [8] WITH r = 1, r = 2, r = 3, r = 4, r = 5 AND

ONBNN. BOLD RESULTS INDICATE BEST PERFORMANCE.

V. CONCLUSION

The results obtained from the on-line NBNN algorithm

are very encouraging, as shown in table I and II, our method

can outperform the four algorithms in almost all cases. The

superior performance is due to the use of covariance features,

which give much more information than other features (like

Haar or Histogram), and the optimal way the appearance

model is updated by using a learning threshold.

Furthermore, the SemiBoost algorithm discards a lot of

useful information by leaving all extracted images unlabeled,

except for the first frame. This leads to poor performance in

the presence of significant appearance changes. The OMB

algorithm is particularly good at dealing with fast partial

occlusions but not with prolonged partial occlusions.

The proposed method is very simple and only needs a

configuration parameter in addition to the fact that its value

is generally very stable despite the different scenes (λ =
0.05).

There are various ways to continue investigation in this

area. First, the motion model we used here is fairly simple

and could be replaced with something more sophisticated,

such as a particle filter. It is also possible to increase

pedestrian tracking in complex background situations by

optimizing initial window selection.

Finally, it would be interesting to combine our method

with the OMB algorithm. Rather than labeling all samples

within an area as positive with the OMB algorithm, our

method could provide a probability proportional to the

distance between the ONBNN model and the sample.
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