Face Recognition with Decision Tree-based Local Binary Patterns

Daniel Maturana, Domingo Mery and Alvaro Soto
Departamento de Ciencias de la Computacion
Pontificia Universidad Catdlica
Santiago, Chile
Email: {dimatura, dmery, asoto}@uc.cl

I. INTRODUCTION

Face recognition algorithms commonly assume that face
images are well aligned and have a similar pose — yet
in many practical applications it is impossible to meet
these conditions. Therefore extending face recognition to
less constrained face images has become an active area of
research.

To this end, face recognition algorithms based on proper-
ties of small regions of face images — often known as local
appearance descriptors or simply local descriptors — have
shown excellent performance on standard face recognition
datasets. Examples include the use Gabor jets [?], SURF
[?]1, SIFT [?], HOG [?] and histograms of Local Binary
Patterns [?]. A comparison of various local descriptor-based
face recognition algorithms may be found in Ruiz del Solar
et al [?].

Among the different local descriptors in the literature,
histograms of Local Binary Patterns (LBP) [?] have become
popular for face recognition tasks due to their simplicity,
computational efficiency and robustness to illumination vari-
ation.

The success of LBPs has inspired several variations.
These include local ternary patterns [?], elongated local
binary patterns [?], multi scale LBPs [?], centralized binary
patterns [?], patch based LBPs [?], among others. However,
these are specified a priori without any input from the
data itself, except in the form of cross-validation to set
parameters. Our key contribution is a method to explicitly
learn discriminative descriptors from the training data, which
is based on a connection between LBPs and decision trees.

In this work we consider the task of closed set face
identification. In this task we are given a gallery of identified
face images and for any given unidentified probe image we
return one of the identities from the gallery.

A. Face recognition with Local Binary Patterns
For any intensity image, we consider a pixel c and a vector
n composed by its s neighbors

n=(ng,...ns)

in an arbitrary order.
LBPs were introduced by Ojala et al [?] as a fine scale
texture descriptor. In LBPs, neighbors are values sampled at

Figure 1. The LBP operator thresholds each pixel against its neighboring
pixels and interprets the result as a binary number. In the bottom image
each gray-level value corresponds to a different local binary pattern.

equally spaced points on a circle of radius r centered on the
the pixel ¢, using bilinear interpolation if the sample points
do not correspond to the center of a pixel.

The LBP operator assigns a decimal number to a pair
(¢,n). This number is calculated as

b= Z 27 (¢, ny)
i=1
where
1 ife<n
Ieny) =4 ="
0 otherwise

This can be seen as assigning a 0 to each neighbor that is
larger than the center pixel, a 1 to each neighbor smaller than
the center pixel, and interpreting the result as a number in
base 2. It is clear that with s neighbors, there are 2° possible
LBP values.

Ahonen et al [?] introduce the use of LBPs for face
recognition with the following basic procedure:

1) Partition the face image in a grid with equally sized
cells, the size of which is an parameter.

2) For each grid cell, apply the LBP operator to each
pixel in the grid cell and create a histogram of the LBP
values (with 2° bins) and concatenate the histograms
into a single vector.

3) Classify a probe face with the identity of the nearest
neighbor in the gallery, where the nearest neighbor
distance is calculated with y? distance between the
histograms of the corresponding face images.

The first step is illustrated in figure ?2?.

B. Local Binary Patterns as Decision Trees

The aforementioned histograms of LBPs may be seen
as quantizing each pair (¢,n) with a specially constructed
binary decision tree. The tree with s levels, where all the
nodes at level [compare the center pixel with neighbor n;.
That is, if ¢ < m; the vector is assigned to the left node
at level [— 1; otherwise, it is assigned to the right node at

level [— 1. Since the tree is complete, at level 0 we have
2° leaf nodes. Each of these nodes corresponds to one of
the 2° possible LBP. In fact, seen as a binary number, each
LBP encodes the path taken by (¢,n) through the tree; for
example, in an LBP with s =8, 11111101 corresponds to
a a (c¢,n) pair which has taken the left path at level [= 1
and taken the right path at all other levels.

This equivalence suggests the possibility of using standard
decision tree induction algorithms to learn discriminative
LBP-like descriptors from the training data. Once we have
a tree, for any set of pairs (¢,n) we may build a histogram
from the tree, with the contents of each histogram bin
corresponding to a leaf node. The idea of using decision
trees to construct discriminative quantizers is in the spirit of
[?], who use random forests to quantize SIFT descriptors.

Thus we may use the same basic algorithm from Ahonen
outlined above, but using trained decision trees in place of
the standard LBP operator in step 2.

Regarding the details of the tree training process, we use
a simple version of Quinlan’s classic ID3 algorithm [?] to
induce the trees. The trees are recursively built top-down
by splitting the pairs (¢, n) in each node with a decision of
the form ¢ < n;, with 1 < ¢ < s. The decision is chosen
greedily at each node via the usual entropy gain criterion:

argmax AH(n;) = H, — p.H, — p/H;
K2

Where H,, is the entropy of the current node, H, and H;
are the entropies of the left and right nodes induced by the
decision n;. Likewise, and p, and p; are the proportion of
(¢,n) pairs that go to the left and right nodes according to
the decision. This criterion favors splits that discriminate
between pairs from each class. The data is split until a
minimum number of pairs per node or a maximum depth
are reached.

It is also worth noting that for this algorithm the neigh-
borhood n is defined somewhat differently than for LBPs.
We use a square neighorhood centered around ¢, and insted
of samples taken along a circle we consider all pixels inside
the square as part of the neighborhood.

The main parameters of this algorithm are the size of the
neighborhood n of ¢ to explore, and the maximum depth
of the trees. The first parameter is determined by the side
length in pixels, of a square centered on the pixel c. All the
pixels within this square are considered as potential split
candidates. The second parameter, tree depth, determines
the size of the resulting histograms. Smaller histograms are
desirable for space and time efficiency, but there is a possible
trade-off in accuracy with respect to larger histograms.

One benefit of this scheme is that we may explore larger
neighborhoods than those used by LBPs, since an LBP
corresponds to a complete tree to 2° values — our scheme
may use a subset of those 2° values. Furthermore, we may
train a separate tree for each grid cell, taking into account the

Table I
RESULTS FOR AT&T-ORL DATABASE

Method Accuracy(%)
Eig 94

LBP} 96.1

LBP? 96.4

DTID3} || 96.25
DTID33 || 95.25
DTID3Z || 975
DTID33 || 95
DTID33 || 952
DTID33 || 952
DTID33 || 96.25
DTID3% || 974

fact that different features may be discriminative in different
facial regions.

While we have explored alternatives to the ID3 algorithm,
such as the use of random forests, these have yielded results
no better than ID3 and we omit these results.

II. METHODS

We have implemented Ahonen’s procedure outlined above
with the LBP algorithm, as well as our proposed variation
with decision trees replacing the standard LBP operator.

For Ahonen with LBP we report results using the standard
settings of s = 8 with r =1 and r = 2, as well as the also
standard partitioning of the image into an 8 x 8 grid.

For our decision tree-based variation, We use the same
8 x 8 grid as above. We present results with various com-
binations of neighborhood sizes and depths to give a notion
of how the algorithm behaves under different settings.

We also evaluate the classic Eigenfaces holistic algorithm
[?]. The main parameter of the algorithm is the number
of eigenfaces. We report the best result, obtained with 40
eigenfaces.

We evaluate our algorithm on the AT&T-ORL dataset, a
well known and freely available face recognition dataset.
This dataset consists of photographs of 40 subjects, each
represented by 10 images. To evaluate recognition accuracy
we perform 10 experiments, randomly choosing 5 images
per individual as gallery and 5 as probes in each experiment.
We report the mean accuracy obtained over the 10 rounds.

III. RESULTS

Table ?? summarizes the mean accuracies obtained for
each algorithm, where Eig corresponds to the where LB P?
corresponds to LBPs with s sampling points and radius
r, and DT'ID3], corresponds to ID3-learned decision trees
with maximum depth d and square side-length 2r.

IV. DISCUSSION

Both algorithms perform very similarly on this database.
The best result, by a small margin, is obtained using the
DTID3 algorithm with trees of maximum depth d = 3 and
square side-length 4.

We note that since each LBP histogram has 28 = 256
bins, and one is created for each of the 64 grid cells, the
resulting concatenated histogram has 25664 = 16384 bins.
In our algorithm, since the trees are usually grown to their
maximum depth, a tree with d will usually create a histogram
of size 2%, so the concatenated histogram will have 24 4 64
bins.

With this observation we can see our algorithm is capable
of creating histograms that are slightly more discriminative
than those made by LBPs with only a small fraction of
the bins. For example, DTID3% has 23 x 64 = 512 bins
yet achieves a higher accuracy than the LBP histograms,
with 16384 bins. The difference is reduced if we consider
a variation of LBPs, known as uniform LBPs [?], which
produce smaller histograms — yet the DT ID3 histograms
are still smaller.

While the space savings are substantial, it is somewhat
disappointing the accuracy difference isn’t larger. Moreover,
we can observe that creating larger trees, and therefore larger
histograms, does not increase accuracy. It seems there is a
“diminishing returns” effect at work, or the larger trees may
be over-fitting the data. This will be object of further study.

V. CONCLUSIONS

We have proposed a novel method that uses the training
data to create discriminative LBP-like descriptors. The first
results indicate this algorithm achieves accuracies compa-
rable to those obtained with classical LBP methods at a
fraction of the space requirements. However, further exper-
imentation on other databases is required. We also hope to
explore variations on our proposal, such as the use of random
forests, to ascertain whether the accuracy can be improved.

